Comparative Interactomics

Revision as of 02:39, 4 May 2015 by S (talk | contribs) (Created page with "<p>  <a class="external text" title="" rel="nofollow" h...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

  Comparative Interactomics paper


Motivation: Many genomes have been completely sequenced. However, detecting and analyzing their protein–protein interactions by experimental methods such as co-immunoprecipitation, tandem affinity purification and Y2H is not as fast as genome sequencing. Therefore, a computational prediction method based on the known protein structural interactions will be useful to analyze large-scale protein–protein interaction rules within and among complete genomes.

Results: We confirmed that all the predicted protein family interactomes (the full set of protein family interactions within a proteome) of 146 species are scale-free networks, and they share a small core network comprising 36 protein families related to indispensable cellular functions. We found two fundamental differences among prokaryotic and eukaryotic interactomes: (1) eukarya had significantly more hub families than archaea and bacteria and (2) certain special hub families determined the topology of the eukaryotic interactomes. Our comparative analysis suggests that a very small number of expansive protein families led to the evolution of interactomes and seemed tohave played a key role in species diversification.